Preparation of optically active photopyridone by lipase-catalysed

 asymmetric resolution ${ }^{1}$H iroshi H ongo, ${ }^{*, a}$ K azuto I wasa, ${ }^{\text {a }} \mathbf{C}$ hizuko Kabuto, ${ }^{\mathrm{b}} \mathrm{H}$ isao M atsuzaki ${ }^{\mathrm{a}}$ and H iroto Nakano ${ }^{\text {a }}$

${ }^{\text {a }}$ Tohoku C ollege of Pharmacy, K omatsushima, A oba-ku, Sendai 981, J apan
${ }^{\text {b }}$ D epartment of C hemistry, Faculty of Science, Tohoku U niversity, A obayama, Sendai 980, J apan

Optically active photopyridones possessing synthetic versatility are obtained conveniently by lipasecatalysed enantioselective acylation or hydrolysis of racemic photopyridones, and the absolute configurations are determined by chemical correlation, X -ray crystallographic and CD spectral analyses.

Introduction

Racemic photoisomers, 3-oxo-2-azabicyclo[2.2.0]hex-5-enes, of 2 (1H)-pyridones containing β-lactam and cyclobutene moieties have great potential as synthetic intermediates. Photopyridines would be synthons of carbapenems $1,{ }^{2}$ carbocyclic oxetanocin $2,{ }^{3}$ which has a similar activity as AZT (zidovudine) against human immunodeficiency virus (HIV), and also of polycyclic ring systems contained a fused β-lactam, 3. ${ }^{4}$ D espite the many

synthetic studies of racemic photopyridones, ${ }^{5}$ little attention has been focussed on those of optically active photopyridones. ${ }^{6}$ Lipase enzymes have been used for syntheses of optically active organic compounds: the enzymic reaction requires no coenzymes, and lipases are commercially available. M ost substrates of the lipase-catalysed asymmetric resolution have been compounds in which stereogenic carbon atoms were adjacent to the reaction site ${ }^{7}$ In this paper, we report the lipasecatalysed enantioselective acylation or hydrolysis of synthetic versatile racemic photopyridones $6 \mathbf{a}-\mathrm{d}$ and $8 \mathbf{a}-\mathrm{d}$, in which chiral centres are remote from the reactive site. The Nhydroxymethyl group of the chiral photopyridones (-)-6a-d obtained is easily removed under the basic conditions used. ${ }^{7}$ M oreover, the chiral photopyridone (-)-6a obtained is potentially a valuable synthetic intermediate; since it contains an electrophile group it may act as a dienophile leading to richly functionalized, polycyclic ring systems with a fused β-lactam ring. ${ }^{4}$ The optically active tetracyclic compound is expected to possess interesting chemical properties and pharmacological activity. The absolute configurations of the optically active photopyridones obtained were determined by chemical correlation, X-ray crystallographic analysis using the anomalous dispersion effect of oxygen atoms or a bromine atom, and/or CD spectral analysis. Although CD spectral analysis has been a useful method for determination of the absolute configuration in optically active compounds, its application for optically active photopyridones has not yet been reported.

Results and discussion

We selected eight kinds of racemic photopyridones, 6a or 8a (act as a dienophile), $\mathbf{6 b}$ or $\mathbf{8 b}$ (simple photopyridone), $\mathbf{6 c}$ or $\mathbf{8 c}$
(synthetic intermediate of carbapenem antibiotics), and $\mathbf{6 d}$ or $\mathbf{8 d}$ (synthetic intermediate of carbocylic oxetanocin analogue) as substrates for lipase-catalysed resolution. Preparations of the substrates, the racemic N -(hydroxymethyl) photopyridones $6 \mathrm{a}-\mathrm{d}$ or the racemic N-(propionyloxymethyl)photopyridones $8 \mathrm{a}-\mathrm{d}$, for lipase-catalysed acylation or hydrolysis are described in Scheme 1. The racemic N -(hydroxymethyl)photopyridones

Scheme 1 Reagents and conditions: $i, h \nu$, benzene or $\mathrm{MeCN}, 24 \mathrm{~h}$; ii , $\mathrm{HCHO}_{\text {aq., }} \mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), sonication; iii, (EtCO) 2 O , pyridine, room temp., 24 h ; iv, hv , benzene, 24 h
$\mathbf{6 a}-\mathrm{d}^{\text {7d,e }}$ were obtained from treatment of the racemates $\mathbf{5 a - d}$, derived from the photoisomerization of the pyridones $4 \mathbf{a}-\mathbf{d}$, with paraformaldehyde under sonication in good yields. The racemic N -(propionyloxymethyl)photopyridones 8a-d were

Table 1 Enzyme-catalysed enantioselective acylation of compounds (\pm)- $\mathbf{6 a - d}$

(\pm)-6a-d
(-)-9a-d
(+)-6a-d

Substrate	R^{1}	R^{2}	Lipase	Time (t/h)	Temp. ($\mathrm{T} /{ }^{\circ} \mathrm{C}$)	Chemical yield (\%)	Product (-)-9a-d			Recovery of compound (+)-6a-d	
							$[a]_{\text {D }}$	$\left(\mathrm{CHCl}_{3}\right)$	E.e. (\%) ${ }^{\text {a }}$	Chemical yield (\%)	E.e(\%)
6a	H	$\mathrm{CO}_{2} \mathrm{Me}$				(-)-9a					
			PS	4	20	8	-342	(c 1.32)		70	10
			AK	2	20	10	-325	(c 0.10)		68	12
6b	H	H				(-)-9b					
			PS	4	20	14	-94	(c 1.50)	97	56	18
			AK	2	20	26	-95	(c 3.82)	98	67	31
6c	OMe	H				$(-)-9 c$					
			PS	0.5	20	12	-36	(c 0.81)	90	81	9
			AK	0.5	20	10	-41	(c 1.55)	93	86	11
6d	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCMe}$	H				(-)-9d					
			PS	1	20	14	-35	(C 0.58)	91	79	17
			AK	1	20	3	-33	(c 0.06)	81	93	3

${ }^{\text {a }}$ Optical yields were determined by HPLC analysis (Chiralpak AS, EtOH or Prioh -hexane).
Table 2 Enzyme-catalysed enantioselective hydrolysis of compounds (\pm)-8a-d

Substrate	R^{1}	R^{2}	Lipase	Time (t/h)	Temp. (T/ ${ }^{\circ} \mathrm{C}$)	Chemical yield (\%)	Product (-)-6a-d			Recovery of compound$(+)-8 a-d$	
							$[a]_{\text {D }}$	$\left(\mathrm{CHCl}_{3}\right)$	E.e. (\%) ${ }^{\text {a }}$	Chemical yield (\%)	E.e. (\%)
8a	H	$\mathrm{CO}_{2} \mathrm{Me}$				(-)-6a					
			PS	4	20	23	-450	(c 1.59)	96	72	33
			AK	8	25	21	-465	(c 1.21)	>98	72	44
8b	H	H	PS	2	28	${ }^{(-)-6 b}$	-240	(c 1.49)	>98	57	51
			AK	2	20	25	-275	(c 1.83)	>98	73	34
8c	OMe	H				(-)-6c					
			PS	2	20	28	-134	(c 2.44)	95	65	49
			AK	2	20	27	-135	(c 1.44)	97	67	40
8d	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCMe}$	H				(-)-6d					
			PS	4	20	12	-68	($c 1.81$)	92	72	18
			AK	16	25	28	-70	(c 1.59)	92	61	52

${ }^{\text {a O O }}$ ptical yields were determined by HPLC analysis (Chiralpak AS, EtOH or Prioh -hexane).
synthesized by photoisomerization of the 1-propionyloxy-methyl-2(1H)-pyridones 7a-d also in good yields. The pyridones 7a-d were obtained by N -hydroxymethylation and subsequent 0 -propionylation of the pyridones $4 \mathrm{a}-\mathrm{d}$. The structures of the pyridones $4 \mathrm{~d}, 7 \mathrm{a}-\mathrm{d}$ and the racemic photopyridones 5a-d, 6a-d, 8a-d were characterized by IR, ${ }^{1} \mathrm{H}$ NMR spectroscopy, mass and high-resolution mass spectrometry (HRMS).

First, we examined the transesterification of the racemic photopyridones 6a-d by the two lipases [PS (pseudomonas cepacia) and AK (pseudomonas fluorescens)] in tert-butyl methyl ether using vinyl acetate as an acyl donor, to obtain the chiral acetates (-)-9a-d. The lipases, PS and AK, can assume a variety of conformations in solution to accommodate a wide variety of substrates. The enantiomeric excess (e.e.) of the chiral acetates (-)-9a-d and the recovered chiral alcohols (+)-6a-d, which were isolated from the mixture by silica gel column chromatography, was determined by H PLC on a chiral phase.

The results are summarized in Table 1. Lipase PS catalysed the transesterification of the hydroxy group on substrates (\pm)-6b-d rapidly with a high degree of enantioselectivity ($90-97 \%$ e.e) in spite of the relatively long distance between the reaction site and the asymmetric centre. A lthough lipase AK catalysed the same reaction of substrates (\pm)-6b,c with a high enantioselectivity similar to that for lipase PS, compound (\pm)-6d showed a moderate enantioselectivity with lipase AK. In the acylation, a satisfactory result in terms of the chemical yield was not obtained. In addition, the recovered alcohols (+)-6b-d were obtained in only low optical yields (3-31\% ee.). The ee. of product (-)-9a or (+)-6a was not confirmed by H PLC analysis on several chiral phases.

Next, we examined the resolution of the racemic esters 8a-d under hydrolytic conditions using diisopropyl ether saturated with water in the presence of two lipases, PS and AK. The ee. of the chiral alcohols (-)-6a-d obtained and the recovered chiral esters (+)-8a-d (18-52\% e.e.) was determined by HPLC

Fig. 1 ORTEP drawing of compound (-)-11: thermal ellipsoids are scaled to include 30\% probability
on a chiral phase in a similar manner to that for the above transesterification. The results are summarized in Table 2. Both lipases, PS and AK, catalysed the hydrolysis of the propionyloxy group on esters (\pm)-8a-d rapidly with a high degree of enantioselectivity (92-98\% e.e.) and moderate chemical yields; catalysis of substrate (\pm)-8b gave the best results $[(-)-6 \mathbf{b}$, $>98 \%$ e.e.]. F rom the above results for the lipase-catalysed resolution of photopyridones using lipase PS or AK, it was concluded that the lipase-catalysed hydrolysis was operative, rather than lipase-catalysed acylation.
The absolute configurations of the chiral photopyridones were determined by chemical correlation, X-ray crystallographic analyses, and CD spectral measurements. The CD spectra of optically active photopyridones have not yet been reported. The absolute stereochemistry of ($1 \mathrm{~S}, 4 \mathrm{~S}$)-(-)-6c was confirmed by conversion into a synthetic intermediate of chiral carbapenem antibiotics, as shown in Scheme 2. The chiral

Scheme 2 Reagents and conditions: i, $28 \% \mathrm{NH}_{3}, \mathrm{MeOH}$ (20\%); ii, $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \%)$
N-unsubstituted photopyridone (-)-5c $\left\{[a]_{\mathrm{D}}-308\right.$ (c 0.8 , $\left.\left.\mathrm{CHCl}_{3}\right)\right\} \dagger$ obtained by dehydroxymethylation of compound (-)6 c was treated with oxalic acid and silica gel to give the chiral carbapenem antibiotics intermediate (1S,4S)-(+)-10 ${ }^{6 a}\left\{[a]_{D}\right.$ +325 (c $0.10, \mathrm{CHCl}_{3}$); lit., ${ }^{6 \mathrm{a}}[a]_{\mathrm{D}}+338$ (c $1.05, \mathrm{CHCl}_{3}$)\}. The absolute configuration of the chiral photopyridone $(-)$-6a was determined to be $1 R, 4 \mathrm{R}$ from that of the chiral M ichael adduct ($1 \mathrm{R}, 4 \mathrm{R}, 5 \mathrm{R}, 6 \mathrm{~S}$)-(-)-11 as shown in Fig. 1, which was determined by employing the large X -ray anomalous dispersive effects of Br and S atoms (Fig. 1). The chiral photopyridone (-)-6a appeared to be a strong M ichael acceptor in M ichael reactions. A M ichael reaction of ene (-)-6a with 4-bromo(thiophenol) was carried out under basic reaction conditions ($\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}$, dichloro-

[^0]

Fig. 2 ORTEP drawing of compound (-)-6d: thermal ellipsoids are scaled to include 30% probability

Scheme 3 R eagents and conditions: $\mathrm{i}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.
methane, room temp., 12 h) and the chiral Michael adduct $(-)-11$ destined for X-ray crystallographic analysis was obtained stereoselectively in good yield (80\%) (Scheme 3). For an X -ray absolute determination of compound (-)-6d, introduction of any heavy atom was unsuccessful. Therefore, a direct determination using the anomalous dispersive effect of oxygen atoms was attempted by careful data collection and remeasurements of Bijveot pairs at low temperature (170 K). As a result, the absolute stereochemistry of compound (-)-6d was determined unambiguously to be $15,4 \mathrm{R}$ as shown in Fig. 2. The molecule (-)-6d was a strained skeleton with non-standard bond lengths. For example, the central $C(4)-C(5)$ bond ($1.619 \AA$) and the double bond $C(1)=C(2)$ ($1.373 \AA$) are considerably lengthened, and the lengths of other bonds are also longer than those of the normal bonds. The dihedral angle between two cis-fused four-membered rings is 114.0°.

The CD spectral analysis of UV-active compounds is considered a reliable method for the determination of absolute configuration. The CD spectra of (-)-6a, c,d showed similarly strong negative Cotton effects at 247.0, 217.0 and 224.5 nm , respectively (Fig .3). The absolute configuration of ($1 \mathrm{~S}, 4 \mathrm{R}$)-$(-)-6 \mathbf{b}$ was determined by comparing a negative Cotton effect at 228.5 nm with that of (-)-6a,c,d (Fig. 3). Therefore, the absolute configurations of the chiral N -(acetoxymethyl)photopyridones (-)-9a-d were determined to be (1R ,4R), (1S, $4 R$), ($15,4 S$) and ($1 S, 4 R$), respectively.

Fig. 3 CD spectra of compound (-)-6a-d and (+)-6b-d
Next, we investigated Diels-A Ider cyclization of the chiral photopyridone (-)-6a with a diene since Diels-A Ider adducts thus obtained could have a skeleton of the protoilludane type, such as is found in formannosin or illudol ring systems. ${ }^{8}$ F urthermore, the β-lactam ring in the adduct may also be cleaved easily. A mixture of photopyridone (-)-6a and the diene 12^{9} in toluene was heated at $45^{\circ} \mathrm{C}$, and a new type of tetracyclic compound, methyl (-)-cis-transoid-cis-7-(tert-butyldimethyl-silyloxy)-12-hydroxymethyl-11-oxo-12-azatetracyclo[7.4.0.0 ${ }^{2,6}$. $\left.0^{10,13}\right]$ tridec- 6 -ene-1-carboxylate (-)-13, with a fused β-lactam ring system, was regio- and stereo-selectively obtained in 20% yield (Scheme 4). It was suggested that the product (-)-13 was

12
TBDMS $=$ tert-butyldimethylsilyloxy
$(1 R, 2 R, 9 R, 10 R, 13 R)(-)-13$

Scheme 4 R eagents and conditions: i, toluene $45^{\circ} \mathrm{C}, 36 \mathrm{~h}$ (20% yield)
the $\mathbf{1 : 1}$ cycloadduct of substrates (-)-6a and $\mathbf{1 2}$ from the mass spectrum and that the IR spectrum showed the corresponding lactam and ester carbonyl absorptions. Although the ${ }^{1} \mathrm{H}$ N M R spectrum provided the chemical shift, multiplicity, and integration for the assigned structure, the indication of the relative stereochemistry could not begained from the data. C onsidering that the chiral adduct (-)- 13 was stereoselectively obtained, the
cis-anti stereochemistry [C(1)-C(9) positions] of compound $(-)-13$ was deduced from the basis of steric factors; the diene 12 attacked from the less hindered side of substrate (-1 -6a (upper side a). Furthermore, the cis-transoid stereochemistry was confirmed by the observation of ${ }^{1} \mathrm{H}$ NM R data. Namely, the coupling constants between $\mathrm{H}(1)$ and $\mathrm{H}(6)$ having a cis configuration and between $\mathrm{H}(4)$ and $\mathrm{H}(5)$ having a trans configuration were observed as 6.9 and 3.3 . Hz , respectively, in compound (-)-11 whose structure was determined by X -ray analysis. In compound (-)-13, the coupling constant between $\mathrm{H}(9)$ and $\mathrm{H}(10)$ was observed as 2.9 Hz , almost identical to trans isomers' value (3.3 Hz) for compound (-)-11. In addition, an NOE enhancement was observed between $H(10)$ and $H \beta(8 e)$ while no NOE enhancement was produced between $\mathrm{H}(9)$ and $H(13)$ in (-)-13. From these results, the cis-transoid stereochemistry of compound (-)-13 was determined. F urthermore, the cis stereochemistry [$\mathrm{C}(1)-\mathrm{CO}_{2} \mathrm{Me-H}(2)$ position] was also confirmed by the observation of NOE enhancement between $H(2)$ and $H(9)$, and the absence of any $N O E$ between $H(2)$ and H(13).

We explored a simple preparation of optically active photopyridones by lipase-catalysed asymmetric resolution and determination of their absoluteconfiguration using CD spectral analysis, which was the first example of an application of this technique relating to optically active photopyridones. The methods reported here should be applicable to the preparation of optically active photopyridones.

Experimental

Mps were determined on a Yanagimoto melting point apparatus and are uncorrected. IR spectra were measured with a Perkin-Elmer 1725X spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-PMX 60, a JEOL JNM-EX 270 (${ }^{1} \mathrm{H}$ NMR $270 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR 67.8 MHz) and JNM-GSX 400 spectrometers with SiM_{4} as an internal standard. The coupling patterns are indicated as follows: singlet $=s$, doublet $=d$, triplet $=t$, multiplet $=m$ and broad $=$ br. J Values are given in Hz . M S were taken on a Hitachi RM G-6M G and a JEOL-JNM-DX 303 spectrometer. Optical rotations were measured with a JASCO-DIP-360 digital polarimeter. CD were measured with a JA SCO J-720 spectrophotometer. The e.e values of the N-hydroxymethyl and N -acetoxymethyl bicyclic lactams were determined by HPLC analysis using chiralpak AS.

Synthesis of photopyridones (\pm)-5a-d

A solution of pyridones $4 \mathrm{a}, \mathrm{c}, \mathrm{d}(4 \mathrm{mmol})$ in benzene $\left(1000 \mathrm{~cm}^{3}\right)$ or $\mathbf{4 b}$ (4 mmol) in $\mathrm{M} \mathrm{eCN}\left(1000 \mathrm{~cm}^{3}\right)$ under nitrogen was irradiated for 24 h respectively. The solvent was removed, and the residue was chromatographed on silica gel ($\mathrm{Et}_{2} \mathrm{O}$) to afford the corresponding photopyridones (\pm)-5a-d.
M ethyl 3-oxo-2-azabicyclo[2.2.0]hex-5-ene-6-carboxylate 5a. ${ }^{1}$ Y ield $290 \mathrm{mg}(58 \%)$, prisms (from $\mathrm{Et}_{2} \mathrm{O}$), mp $85-86^{\circ} \mathrm{C}$ (lit., ${ }^{183-84}{ }^{\circ} \mathrm{C}$).
3-0 xo-2-azabicyclo[2.2.0]hex-5-ene 5b. ${ }^{5 \mathrm{~d}}$ Y ield 230 mg (46\%), prisms (from $\mathrm{Et}_{2} \mathrm{O}$), $\mathrm{mp} 64-65^{\circ} \mathrm{C}$ (lit., ${ }^{\text {sd }} 65.5-66.5^{\circ} \mathrm{C}$).

5-M ethoxy-3-oxo-2-azabicyclo[2.2.0]hex-5-ene 5c. ${ }^{5 b} \quad$ Y ield 370 mg (74%), prisms (from $\mathrm{Et}_{2} \mathrm{O}$), $\mathrm{mp} 89-90^{\circ} \mathrm{C}$ (lit., ${ }^{\text {5b }} 94-$ $95^{\circ} \mathrm{C}$).

5-[1,1-(E thylenedioxy)ethyl]-3-oxo-2-azabicyclo[2.2.0]hex-5-
ene 5d. Y ield $315 \mathrm{mg}(63 \%)$, prisms (from $\mathrm{Et}_{2} \mathrm{O}$), $\mathrm{mp} 48-50^{\circ} \mathrm{C}$; HRMS m/z: Found: M^{+}, 181.0695. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires M , 181.0739; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1746(\mathrm{NC=O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.55(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.98-4.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.18\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,4} 2.2, \mathrm{~J}_{4,6}\right.$ 1.1, 4-H), $4.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 4 \mathrm{2} 2.2,1-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4,6} 1.1,6-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 23.2\left(\mathrm{CH}_{3}\right), 46.3(\mathrm{C}-1)$, $58.2(\mathrm{C}-4), 64.9$ and $65.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 104.9\left(\mathrm{CCH}_{3}\right), 134.5$ ($\mathrm{C}-6$), 154.3 ($\mathrm{C}-5$) and 171.3 ($\mathrm{C}=0$).

Synthesis of N-hydroxymethyl-3-oxo-2-azabicyclo[2.2.1]hex-5enes (\pm)-6a-d
A mixture of lactam (\pm)-5a-d (10 mmol), paraformaldehyde (1 g) and potassium carbonate ($0.2 \mathrm{~g}, 1.5 \mathrm{mmol}$) in water ($20 \mathrm{~cm}^{3}$) was reacted under sonication for 6 h at room temperature. Extraction with CHCl_{3}, drying ($\mathrm{M} \mathrm{SO}_{4}$), and removal of the solvent in vacuo provided the crude N -hydroxymethyl analogue, which was purified by silica gel TLC ($\mathrm{Et}_{2} \mathrm{O}$) to give (\pm)-6a-d.
M ethyl 2-hydrox ymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene-6-carboxylate 6a. Y ield 228 mg (64%), prisms (from $\mathrm{Et}_{2} \mathrm{O}$); mp $73-74{ }^{\circ} \mathrm{C}$; HRMS m/z: Found: M^{+}, 183.0500. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{M}, 183.0532 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1752(\mathrm{NC=}=0)$ and 1724 ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,4} 2.2\right.$, $\left.J_{4,5} 1.1,4-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}_{1} \mathrm{~J}_{1,5} 2.5, \mathrm{~J}_{1,4} 2.2,1-\mathrm{H}\right), 4.62(1 \mathrm{H}$, d, J $11.3, \mathrm{CH}_{2}$) $4.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.3, \mathrm{CH}_{2}\right)$ and $7.10(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{1,5} 2.5, \mathrm{~J}_{4,5} 1.1,5-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 52.3\left(\mathrm{CH}_{3}\right), 52.6(\mathrm{C}-1)$, $55.5(\mathrm{C}-4), 66.5\left(\mathrm{CH}_{2}\right), 144.1(\mathrm{C}-6), 145.2(\mathrm{C}-5), 163.1$ and 166.9 ($\mathrm{C}=0$).

2-H ydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene 6 b. Y ield 296 mg (75%), an oil; HRMS m/z: Found: $\mathrm{M}^{+}, 125.0528$. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}$ requires M, 125.0477; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1731$ ($\mathrm{NC=O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.45\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{1,4}=\mathrm{J}_{1,5}=2.3\right.$, $1-\mathrm{H}), 4.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{CH}_{2}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{CH}_{2}\right), 6.52$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{1,5}=\mathrm{J}_{5,6}=2.3,5-\mathrm{H}\right)$ and $6.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6} 2.3, \mathrm{~J}_{1,6} 1.3\right.$, $6-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 53.7(\mathrm{C}-1), 58.0(\mathrm{C}-4), 66.4\left(\mathrm{CH}_{2}\right), 138.3$ (C-5), 142.5 ($\mathrm{C}-6$) and 170.6 ($\mathrm{C}=0$).
2-H ydroxymethyl-5-methoxy-3-oxo-2-azabicyclo[2.2.0]hex-5ene $6 \mathbf{c}$. Yield $315 \mathrm{mg}\left(85 \%\right.$), prisms (from $\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 70-72^{\circ} \mathrm{C}$; HRMS m/z: Found: M^{+}, 155.0548. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires M , 155.0582; m/z $155\left(\mathrm{M}^{+}\right) ; \quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1729$ ($\mathrm{NC=O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.24(1 \mathrm{H}, \mathrm{br} s, 4-\mathrm{H}), 4.28(1 \mathrm{H}$, $\mathrm{brs}, 1-\mathrm{H}), 4.50-4.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $5.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$; $\delta_{\mathrm{c}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 46.0(\mathrm{C}-1), 56.9\left(\mathrm{CH}_{3}\right), 59.1(\mathrm{C}-4), 66.6\left(\mathrm{CH}_{2}\right), 101.5$ ($\mathrm{C}-6$), $158.5(\mathrm{C}-5$) and 169.3 ($\mathrm{C}=0$).
5-[1,1-(E thylenediox y)ethyl]-2-hydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene 6d. Yield 287 mg (82%), prisms (from $\mathrm{Et}_{2} \mathrm{O}$); mp $72-73^{\circ} \mathrm{C}$; H RM S m/z: Found: $\mathrm{M}^{+}, 211.0852$. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires $\mathrm{M}, 211.0845 ; \mathrm{m} / \mathrm{z} 211\left(\mathrm{M}+\right.$); $v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 1743(\mathrm{NC=}=0) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.00(4 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $4.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,4} 2.2, \mathrm{~J}_{4,6} 1.2,4-\mathrm{H}\right), 4.32(1 \mathrm{H}$, $\left.d_{1} \mathrm{~J}_{1,4} 2.2,1-\mathrm{H}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.4, \mathrm{NCH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 11.4, NCH_{2}) and $6.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4,6} 1.2,6-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 23.0$ $\left(\mathrm{CH}_{3}\right), 49.2(\mathrm{C}-1), 56.8(\mathrm{C}-4), 65.0$ and $65.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 66.5$ $\left(\mathrm{NCH}_{2}\right), 104.8\left(\mathrm{CCH}_{3}\right), 134.4(\mathrm{C}-6), 152.2(\mathrm{C}-5)$ and 169.6 ($\mathrm{C}=0$).

Synthesis of N -propionylox ymethyl-2(1H)-pyridones (\pm)-7a-d A mixture of a pyridone $(\pm)-4 \mathrm{a}-\mathrm{d}(24 \mathrm{mmol})$, paraformaldehyde $(3.0 \mathrm{~g})$ and potassium carbonate ($1.5 \mathrm{~g}, 0.01 \mathrm{~mol}$) in water (30 cm^{3}) was treated under sonication for 3 h at room temperature. A fter filtration of the reaction mixture, the aqueous layer was extracted with $\mathrm{CHCl}_{3}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic layer was concentrated to give the crude product, which was used for the next step. Ethanol ($40 \mathrm{~cm}^{3}$) and propionic anhydride (36 mmol) were added to the crude product and the mixture was stirred at room temperature before being concentrated in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed successively with saturated aq. NaHCO_{3}, aq. $\mathrm{HCl}(2.7$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$), and saturated aq. NaCl . The organic layer was dried over $\mathrm{M} \mathrm{gSO}_{4}$ and was then concentrated in vacuo. The crude product was chromatographed on a silica gel column eluted with diethyl ether to give title products 7a-d.

M ethyl 6-oxo-1-propionyloxymethyl-1,6-dihydropyridine-3carboxylate 7a. Yield $3.7 \mathrm{~g}(64 \%)$, prisms (from $\mathrm{Et}_{2} \mathrm{O}$); mp 62$63{ }^{\circ} \mathrm{C}$; HRMS m/z: Found: $\mathrm{M}^{+}, 239.0810 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires M , 239.0794; $v_{\text {max }}$ (film)/cm ${ }^{-1} 1748(\mathrm{C}=0), 1723$ ($\mathrm{C}=0$) and 1678 ($\mathrm{NC=O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.14\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.42(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.89(2 \mathrm{H}, \mathrm{s}, \mathrm{N} \mathrm{CH} 2), 6.54(1$ H, d, J ${ }_{3,4} 10,3-H$), $7.84\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{3,4} 10, \mathrm{~J}_{4,6} 2,4-\mathrm{H}\right.$) and 8.37 (1 H, d, J ${ }_{4,6}$ 2, 6-H).

1-P ropionyloxymethyl-2(1H)-pyridone 7b. Y ield 3.7 g (65\%), oil; HRMS m/z: Found: M ${ }^{+}$, 181.0713. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires M, 181.0739; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1747$ ($\mathrm{C}=0$) and 1672 ($\mathrm{NC=O}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{CH}_{3}\right), 2.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{N} \mathrm{CH}_{2}\right), 6.20\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{4,5}=\mathrm{J}_{5,6}=7,5-\mathrm{H}\right), 6.60(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}_{3,4} 7,3-\mathrm{H}\right), 7.39\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,4}=\mathrm{J}_{4,5}=7,4-\mathrm{H}\right)$ and $7.60(1 \mathrm{H}$, dd, $\mathrm{J}_{5,6} 7, \mathrm{~J}_{4,6} 2,6-\mathrm{H}$).

4-M ethoxy-1-propionyloxymethyl-2(1H)-pyridone 7c. Y ield $4.7 \mathrm{~g}(92 \%)$, prisms (from $\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 38-40^{\circ} \mathrm{C}$; HRMS m/z: Found: M^{+}, 211.0838. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires M , 211.0845; $v_{\text {max }}{ }^{-}$ (film)/cm ${ }^{-1} 1743(\mathrm{C}=0)$ and $1665(\mathrm{NC=}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13$ (3 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 3.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 3.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.76-6.10\left(4 \mathrm{H}, \mathrm{m}, 3-\right.$ and $\left.5-\mathrm{H}, \mathrm{NCH}_{2}\right)$ and $7.33-7.56(1$ H, m, 6-H).

4-[1,1-(E thylenedioxy)ethylf-1-propionyloxymethyl-2(1H)pyridone 7d. Y ield 2.1 g (48%), prisms (from $\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 83-$ $85^{\circ} \mathrm{C}$; HRMS m/z: Found: $\mathrm{M}^{+}, 267.1096 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires M, 267.1107; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1746(\mathrm{C}=0)$ and $1672(\mathrm{NC=O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.40$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.70-4.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.86(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{2}\right), 6.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6} 8, \mathrm{~J}_{3,5} 2,5-\mathrm{H}\right), 6.68\left(1 \mathrm{H}, \mathrm{d}_{1} \mathrm{~J}_{3,5} 2\right.$, $3-\mathrm{H})$ and $7.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{5,6}, 6-\mathrm{H}\right)$.

Synthesis of N-(propionyloxy) photopyridones (\pm)-8a-d

A solution of pyridones $7 \mathrm{a}-\mathrm{d}$ (4 mmol) in benzene ($1000 \mathrm{~cm}^{3}$) under nitrogen was irradiated for 24 h . The solvent was removed, and the residue was chromatographed on silica gel [diethyl ether-hexane (1:1)] to afford the corresponding photopyridones 8a-d.

M ethyl 3-oxo-2-propionyloxymethyl-2-azabicyclo[2.2.0]hex-5-ene-6-carboxylate 8a. Y ield 640 mg (64%), oil; HRMS m/z: Found: M^{+}, 239.0794. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires M , 239.0811; $v_{\text {max }}{ }^{-}$ (film)/cm ${ }^{-1} 1772(\mathrm{NC=O})$ and $1729(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13$ (3 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$) $4.22\left(1 \mathrm{H}, \mathrm{dd}^{2} \mathrm{~J}_{4,5} 1.1, \mathrm{~J}_{1,4} 2.2,4-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{1,5} 2.5, \mathrm{~J}_{1,4} 2.2,1-\mathrm{H}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{NCH}_{2}\right), 5.30(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J} 11.0, \mathrm{NCH}_{2}\right)$ and $7.14\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1,5} 2.5, \mathrm{~J}_{4,5} 1.1,5-\mathrm{H}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.9$ (C-1), $55.5(\mathrm{C}-4), 66.0\left(\mathrm{~N} \mathrm{CH}_{2}\right), 144.2(\mathrm{C}-6), 146.0(\mathrm{C}-5)$, 161.5, 167.4 and $173.6(\mathrm{C}=0)$.

3-0 xo-2-propionyloxymethyl-2-azabicyclo[2.2.0]hex-5-ene 8b. Y ield $920 \mathrm{mg}(92 \%)$, oil; H R M S m/z: Found: $\mathrm{M}^{+}, 181.0659$. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires M , 181.0738; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 1757$ ($\mathrm{NC=O}$) and $1747(\mathrm{C}=0)$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}_{1,4}=\mathrm{J}_{1,5}=2.6,1-\mathrm{H}\right), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$ and $6.50-6.55(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.9\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{C}-1), 58.5$ (C-4), $65.7\left(\mathrm{NCH}_{2}\right), 139.3$ (C-5), 141.9 (C-6), 170.0 and 174.6 ($\mathrm{C}=0$).
5-M ethoxy-3-oxo-2-propionyloxymethyl-2-azabicyclo[2.2.0] hex-5-ene 8c. Y ield 980 mg (98%), yellow oil; HRMS m/z: Found: $\mathrm{M}^{+}, 211.0827 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires M , 211.0844; $v_{\text {max }}{ }^{-}$ (film)/cm ${ }^{-1} 1762(\mathrm{NC=O})$ and $1742(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15$ (3 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{br}$ s, $1-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}$, J $11.2, \mathrm{NCH}_{2}$) $5.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$ and $5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2$, $\left.\mathrm{NCH}_{2}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.9\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{2}\right), 47.7(\mathrm{C}-1), 56.9$ $\left(\mathrm{OCH}_{3}\right), 59.7(\mathrm{C}-4), 66.0\left(\mathrm{NCH}_{2}\right), 101.0(\mathrm{C}-6), 158.9(\mathrm{C}-5)$, 168.8 and $174.6(\mathrm{C}=0)$.

5-[1,1-(E thylenedioxy)ethyl]-3-oxo-2-propionyloxymethyl-2-azabicyclo[2.2.0]hex-5-ene 8d. Y ield 880 mg (88\%), oil; HRM S m / z : Found: M^{+}, 267.1114. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{M}, 267.1109$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1762(\mathrm{NC}=0)$ and $1746(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.92-4.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, $4.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} .4 \mathrm{~L} 2.3,1-\mathrm{H}), 5.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{NCH}_{2}\right), 5.16$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{NCH}_{2}$) and $6.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4,6} 1.0,6-\mathrm{H}\right)$; $\delta_{\mathrm{c}}{ }^{-}$ $\left(\mathrm{CDCl}_{3}\right) 8.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.1\left(\mathrm{CCH}_{3}\right), 27.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.7$ (C-1), $57.2(\mathrm{C}-4), 64.9$ and $65.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 65.8\left(\mathrm{NCH}_{2}\right), 104.8$ $\left(\mathrm{CCH}_{3}\right), 133.9(\mathrm{C}-6), 153.1(\mathrm{C}-5), 169.4$ and $174.5(\mathrm{C}=0)$.

General procedure for lipase-catalysed transesterification of N -hydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-enes (\pm)-6a-d A mixture of substrate (\pm)-6a-d (2.4 mmol), lipase (PS or AK) $(0.3 \mathrm{~g})$ and vinyl acetate (7.2 mmol) in tert-butyl methyl ether ($100 \mathrm{~cm}^{3}$) was stirred at room temperature. The lipase was removed by filtration and was washed with diethyl ether. The combined organic layer was concentrated, and the residue was chromatographed on a silica gel column eluted with diethyl ether to give the corresponding N -acetoxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-9a-d and N -hydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (+)-6a-d. Enantiomeric excesses of products (-)-9a-d or (+)-6a-d were determined by HPLC analysis using a chiral column [Chiralpak AS, EtOH or PriOH -hexane]. The reaction times, enantiomeric excesses, and chemical yields are listed in Table 1. The spectral data of the products (-)-9a-d or (+)-6a-d were identical with those of the corresponding racemic compounds (\pm)-9a-d or (\pm)-6a-d, respectively.
(1R,4R)-(-)-M ethyl 2-acetoxymethyl-3-oxo-2-azabicyclo-[2.2.0]hex-5-ene-6-carboxylate (-)-9a. Oil; HRM S m/z: Found: M^{+}, 225.0652. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5}$ requires M , 225.0657; $v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 1769(\mathrm{NC}=0)$, $1747(\mathrm{C}=0)$ and $1727(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, $4.71\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{1,4}=\mathrm{J}_{1,5}=2.3,1-\mathrm{H}\right), 5.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{CH}_{2}\right)$, $5.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{CH}_{2}\right)$ and $7.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1.5} 2.3,4-\mathrm{H}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.7\left(\mathrm{OCOCH}_{3}\right), 51.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.8(\mathrm{C}-1)$, 55.5 (C-4), $66.0\left(\mathrm{CH}_{2}\right), 144.2(\mathrm{C}-6), 146.0(\mathrm{C}-5), 161.5,167.4$ and 171.2 (C=0).
(1S,4R)-(-)-2-A cetoxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-9b. Oil; HRM S m/z: Found: M ${ }^{+}$, 167.0635. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$ requires $\mathrm{M}, 167.0582 ; v_{\text {max }}($ (film $) / \mathrm{cm}^{-1} 1746(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}{ }^{3}\right)$ $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.49\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} \mathrm{J}_{1,4}=\right.$ $\left.\mathrm{J}_{1,5}=2.3,1-\mathrm{H}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5$, $\left.\mathrm{CH}_{2}\right)$ and 6.52-6.56 ($2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.7$ $\left(\mathrm{CH}_{3}\right), 55.2(\mathrm{C}-1), 58.5(\mathrm{C}-4), 65.8\left(\mathrm{CH}_{2}\right), 139.3(\mathrm{C}-5), 141.9$ ($\mathrm{C}-6$), 170.0 and $171.1(\mathrm{C}=0)$; H PLC, flow rate $1.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexane-ethanol 90:10; Chiralpak AS; $\mathrm{t}_{\mathbf{R}}(\min) 18(+)-9 b, 26$ $(-)-9 \mathrm{~b}$.
(1S,4S)-(-)-2-A cetoxymethyl-5-methoxy-3-oxo-2-aza-
bicyclo[2.2.0]hex-5-ene (-)-9c. Oil; HRMS m/z: Found: M ${ }^{+}$, 197.0717. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{M}, 197.0688$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1762(\mathrm{NC=O})$ and $1746(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and 5.03-5.16 ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, \mathrm{CH}_{2}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.7\left(\mathrm{CH}_{3}\right), 47.7$ (C-1), $56.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 59.7(\mathrm{C}-4), 66.1\left(\mathrm{CH}_{2}\right), 100.9(\mathrm{C}-6), 158.9$ ($\mathrm{C}-5$), 168.8 and 171.1 ($\mathrm{C}=0$). H PLC, flow rate $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexane-ethanol 90:10; Chiralpak AS; $\mathrm{t}_{\mathrm{R}}(\mathrm{min}) 42(+)-9 \mathrm{c}, 48$ (-)-9c.
(1S,4R)-(-)-A cetoxymethyl-5-[1,1-(ethylenedioxy)ethyl]-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-9d. Yellow oil; HRMS m / z : Found: $\mathrm{M}^{+}, 253.0946 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires $\mathrm{M}, 253.0950$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1758(\mathrm{NC=}=0)$ and $1746(\mathrm{C}=0)$) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.52$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}$), 2.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 3.93-4.03 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$),
 11.2, CH_{2}), $5.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{CH}_{2}\right)$ and $6.38\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,6} 1.3\right.$, $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.7\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CCH}_{3}\right), 50.7(\mathrm{C}-1), 57.2$ (C-4), 64.9 and $65.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 65.8\left(\mathrm{NCH}_{2}\right), 104.8\left(\mathrm{CCH}_{3}\right)$, 133.8 (C-6), 153.1 ($\mathrm{C}-5$), 169.3 and 171.1 ($\mathrm{C}=0$). H PLC, flow rate $1.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexane-ethanol $90: 10$; Chiralpak $A S$; t_{R} $(\min) 35(+)-9 \mathrm{~d}, 44(-)-9 \mathrm{~d}$.

G eneral procedure for lipase-catalysed hydrolysis of N -propionyl-oxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-enes (\pm)-8a-d
A mixture of an ester (\pm)-8a-d (1.9 mmol) and lipase (PS or AK) (0.3 g) in diisopropyl ether saturated with water ($100 \mathrm{~cm}^{3}$) was stirred at room temperature. The lipase was removed by filtration. The filtrate was concentrated, and the residue was chromatographed on a silica gel column eluted with diethyl ether to give the corresponding N -hydroxymethyl-3-0xo-2-azabicyclo[2.2.0]hex-5-ene (-)-6a-d and N -propionyloxy-
methyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (+)-8a-d. Enantiomeric excesses of products (+)-8a-d or (-)-6a-d were determined by H PLC analysis using a chiral column (Chiralpak AS, EtOH or PriOH-hexane). The reaction times, enantiomeric excesses and chemical yields are listed in Table 2. The spectral data of the products $(-)-6 \mathbf{a}-\mathbf{d}$ or $(+)-8 \mathbf{a}-\mathbf{d}$ were identical with those of the corresponding racemic compounds (\pm)-6a-d or (\pm)-8a-d, respectively.
(1R,4R)-(-)-M ethyl 2-hydroxymethyl-3-oxo-2-azabicyclo-[2.2.0]hex-5-ene-6-carboxylate (-)-6a. Prisms (from $\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 72-73^{\circ} \mathrm{C}$; HPLC flow rate $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexane-ethanol 80 :20; Chiralpak AS; $t_{R}(\min) 24(+)-6 a, 31(-)-6 a$.
(1S,4R)-(-)-2-H ydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-6b. Oil; HPLC flow rate $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexaneethanol 95:5; Chiralpak AS; $\mathrm{t}_{\mathrm{R}}(\min) 45(-)-6 b, 51(+)-6$ b.
($1 \mathrm{~S}, 4 \mathrm{4S}$)-(-)-2-H ydrox ymethyl-5-methoxy-3-oxo-2-aza-
bicyclo[2.2.0]hex-5-ene (-)-6c. Prisms (from $\mathrm{Et}_{2} \mathrm{O}$); mp 68$70^{\circ} \mathrm{C}$; HPLC flow rate $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexane-ethanol $85: 15$; Chiralpak AS; $\mathrm{t}_{\mathrm{R}}(\mathrm{min}) 20(-)-6 \mathrm{c}, 22(+)-6 \mathrm{c}$.
(15,4R)-(-)-5-[1,1-(E thylenedioxy) ethyl]-2-hydrox ymethyl-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-6d. Prisms (from Et ${ }_{2}$) ; mp $72-73^{\circ} \mathrm{C}$; HPLC flow rate $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; hexaneisopropyl alcohol 90:10; Chiralpak AS; $\mathrm{t}_{\mathrm{R}}(\mathrm{min}) 35(+)$-6d, 40 (-)-6d.

M ichael reaction of photopyridine (-)-6a with 4-bromo(thiophenol)

A mixture of compound (-)-6a (100% e.e., $20 \mathrm{mg}, 0.11 \mathrm{mmol}$), 4-bromo(thiophenol) ($20 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (11 mg , $0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature. The solvent was removed and the residue was chromatographed on a silica gel column to give ($1 \mathrm{R}, 4 \mathrm{R}, 4 \mathrm{R}, 6 \mathrm{~S}$)-(-)-methyl 5-(4-bromophenylthio)-2-hydroxymethyl-3-oxo-2-azabicyclo[2.2.0]hexane-6-carboxylate (-)-11 ($33 \mathrm{mg}, 80 \%$), prisms (from CHCl_{3}-hexane); mp $137-139^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1745$ and 1727; $[a]_{\mathrm{D}}-57\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.87$ ($1 \mathrm{H}, \mathrm{br}$ s, OH), 3.40 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8, \mathrm{~J} 6.9,6-\mathrm{H}$), $3.55(1 \mathrm{H}, \mathrm{dd}$, J 2.9, J $3.3,4-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9$, J 6.9, 1-H), 4.42 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3, \mathrm{~J} 5.8,5-\mathrm{H}$), 4.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$, J $11.7, \mathrm{CH}_{2} \mathrm{OH}$), $4.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0\right.$, J $11.7, \mathrm{CH}_{2} \mathrm{OH}$), 7.19 (2 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8, \mathrm{~J} 6.6,4-\mathrm{BrC}_{6} \mathrm{H}_{4}$) and $7.46(2 \mathrm{H}, \mathrm{dd}$, J $1.8, \mathrm{~J} 6.6$, $\left.4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 41.3$ (C-1), 49.4 (C-6), $51.0(\mathrm{C}-5), 52.6$ $\left(\mathrm{CH}_{3}\right), 55.7(\mathrm{C}-4), 65.8\left(\mathrm{CH}_{2}\right), 121.2,131.0,132.5$ and 133.0 ($4-\mathrm{BrC}_{6} \mathrm{H}_{4}$), 166.0 and $171.0(\mathrm{C}=0$) (Found: C, 45.16; H, 3.79; $\mathrm{N}, 3.44 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrNO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 45.17 ; \mathrm{H}, 3.79 ; \mathrm{N}, 3.76 \%$); m/z: $372\left(\mathrm{M}^{+}\right)$.

(1S,4S)-(-)-5-M ethoxy-3-oxo-2-azabicyclo[2.2.0]hex-5-ene (-)-5c

A solution of substrate (-)-6c (100% ee., $0.6 \mathrm{~g}, 4.80 \mathrm{mmol}$) and aq. $\mathrm{NH}_{3}\left(16.4 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.6 \mathrm{~cm}^{3}\right)$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 4 h . The solvent was removed under reduced pressure and the residue was purified by silica gel TLC $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ to give title compound $(-)-5 \mathrm{c}$. The spectral data of the product was identical with those of racemate (\pm)-5c: 97 mg (20%), 100% e.e. [the e.e was determined by HPLC analysis using a chiral column (C hiralpak AS, EtOH-hexane)], mp 92$93^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}-308\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$.
(1S,4S)-(+)-3,5-D ioxo-2-azabicyclo[2.2.0]hexane (+)-10
To a suspension of oxalic acid dihydrate ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$), water ($0.2 \mathrm{~cm}^{3}$), and silica gel (2 g) was added a solution of compound (-)-5c (100% e.e., $0.2 \mathrm{~g}, 1.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ cm^{3}) and the mixture was stirred at room temperature for 2 h . Silica gel was removed by filtration. The filtrate was concentrated and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether to afford title dione $(+)$-10. The spectral data of the product were identical with those of $(+)-10$: yield 106 mg (60%); mp $92-94{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+325$ (c 1.2, CHCl_{3}) \{lit., ${ }^{\text {aa }} 94-$ $\left.96^{\circ} \mathrm{C},[a]_{\mathrm{D}}+338.5\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)\right\}$.

(1R , 2R , 9R , 10R , 13R)-(-)-cis-transoid-cis-M ethyl 7-tert-butyl-dimethylsilyloxy-12-hydrox ymethyl-11-oxo-12-azatetracyclo[7.4.0.0 ${ }^{2,6} .0^{10,13}$]tridec-6-ene-1-carboxylate (-)-13

A solution of compound (-)-6a (100% e.e, $60 \mathrm{mg}, 0.3 \mathrm{mmol}$) and diene 12 ($0.27 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}$) in toluene ($10 \mathrm{~cm}^{3}$) was stirred for 24 h at $45^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was concentrated to dryness in vacuo. The residue was subsequently purified by silica gel column chromatography with diethyl ether as eluent to afford the adduct (-)-13 ($81 \mathrm{mg}, 20 \%$), $[a]_{\mathrm{D}}-20$ (c $0.7, \mathrm{CHCl}_{3}$); prisms (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$); mp 142-144 ${ }^{\circ} \mathrm{C}$; HRMS m/z: Found: M^{+}, 407.2174. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5}$ Si requires M , 407.2128; $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1762(\mathrm{NC=O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.12(6 \mathrm{H}$, d, J 1.6, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.54-1.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.8, \mathrm{~J}_{8,9} 2.6\right.$, 8-H), 2.22-2.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2$), 2.41-2.56 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 2.59$2.65(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.94\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{10,13} 3.6, \mathrm{~J}_{9,10} 2.9,10-\mathrm{H}\right.$), 3.25-3.29 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.87(1 \mathrm{H}, \mathrm{d}$, $\left.\int_{10,13} 3.6,13-\mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{NCH}_{2}\right)$ and $4.79(1 \mathrm{H}$, d, J 11.2, NCH_{2}); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 3.7\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.6$ [$\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.0,27.8$ and $28.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.7$ (C-8), 40.0 (C-9), $44.0(\mathrm{C}-2), 50.6(\mathrm{C}-10), 52.1\left(\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 52.4$ (C-13), 56.1 (C-1), $65.9\left(\mathrm{NCH}_{2}\right), 117.9$ (C-6), 141.1 (C-7), 169.2 and $175.9(\mathrm{C}=0)$.

X-R ay structure determinations

Absolute structure determination of compound (-)-6d. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}, \quad \mathrm{M}=211.22$. Orthorhombic, $a=7.687(1), \quad b=$ 19.010(3), $c=7.365(1) ~ \AA, V=1048.2(2) \AA^{3}$ (cell constants were determined by least-squares refinement on diffractometer angles, $56<2 \theta<67^{\circ}$ for 25 automatically centred reflections, $\lambda=1.54178 \AA$). Space group $P 2_{1} 2_{1} 2_{1}(\mathrm{No} .19), Z=4, D_{x}=1.10$ $\mathrm{g} \mathrm{cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=5.0 \mathrm{~cm}^{-1}$. Prisms, crystal size $=0.20 \times$ $0.20 \times 0.25 \mathrm{~mm}$, Rigaku AFC5R diffractometer (45 kV , 200 mA), temperature 170 K , graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $2 \theta-\omega$ scan mode, scan width $=1.0+0.35 \tan \theta$, 2θ scan speed $=6^{\circ} \min ^{-1}$, a F riedel pair of $\left[F_{0}(h, k, l)\right.$ and $\left.\mathrm{F}_{0}(-\mathrm{h},-\mathrm{k},-1)\right]$ measured alternately, 2039 reflections within $5<2 \theta<128^{\circ}$ measured. Direct methods were applied for the location of all non-hydrogen atoms. Full-matrix least-squares refinement was employed with anisotropic thermal parameters. All hydrogen atoms were found in the difference Fourier syntheses and were refined isotropically. $1786\left[I_{0}>2 \sigma\left(I_{0}\right)\right]$ Reflections were used in the refinement of 188 parameters. The weighting scheme $\omega=4 \mathrm{~F}_{0}{ }^{2} / \sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)$ with $\sigma\left(\mathrm{F}_{0}\right)$ calculated from counting statistics. Finally, anomalous dispersion effects were introduced and then converged to give the final R-value of $0.0584\left(R_{w}=0.0697\right)$ and for its enantiomer an R-value of $0.0589\left(R_{w}=0.0705\right)$. For the correct absolute structure, final refinement gave goodness-of-fit $=1.37$, the maximam shift/ error $=0.0423$ and the $\Delta \rho_{\text {max }}=0.20$ and $\Delta \rho_{\text {min }}=-0.21$ e \AA^{-3}. The difference R ratio for the two enantiomers was 1.008 and 1.011 for R - and R_{w}-values. H amilton's R -factor ratio is rarely beyond $R(1,1506,0.005)=1.002$ for 99.5% probability level. ${ }^{10}$ To obtain the most reliability, careful re-measurements were examined for the more sensitive Bijvoet pairs. A total of 60 reflections with $\mathrm{I}_{0}>10 \sigma\left(\mathrm{I}_{0}\right)$ and with larger $\Delta \mathrm{F}_{\mathrm{c}} /\left[\mathrm{F}_{\mathrm{c}}(\mathrm{H})+\right.$ $\left.\mathrm{F}_{\mathrm{c}}(-\mathrm{H})\right]$ were selected and all of their eight Bijvoet pairs were re-measured at slow scan speed ($2^{\circ} \mathrm{min}^{-1}$) with five repeats. In the order of large $\Delta F_{c} /\left[F_{c}(H)+F_{c}(-H)\right]$-values, the first 20 reflections all gave the correct sign relationships of nonequality between the F_{o} - and F_{c}-values for the average of four pairs. The following $30,40,50$ and 60 reflections gave consistency of signs for numbers of $28,34,39$ and 42 reflections, respectively. These results indicate that the determination of absolute configuration is correct, and is in agreement with results from CD spectral analyses.

Absolute structure determination of compound (-)-11. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrNO}{ }_{4} \mathrm{~S}, \quad \mathrm{M}=372.23$. M onoclinic, $a=6.063(4), \quad b=$ $7.342(4), \quad c=16.497(6) \AA, \quad \beta=93.47(3)^{\circ}, \quad V=733.0(14) \AA^{3}$ (determined by least-squares refinement on diffractometer
angles, for 25 automatically centred reflections, $30<2 \theta<42^{\circ}$, $\lambda=0.71069 \AA$). Space group $P 2_{1}$ (No. 4), $Z=2, D_{x}=1.69 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Mo} 0-\mathrm{K} \alpha)=29.25 \mathrm{~cm}^{-1}$. Plates, crystal size $=0.15 \times$ $0.30 \times 0.40 \mathrm{~mm}$, Rigaku AFC5R diffractometer ($45 \mathrm{kV}, 200$ $\mathrm{mA}), \mathrm{T}=150 \mathrm{~K}$, graphite-monochromated $\mathrm{M} 0-\mathrm{K} \alpha$ radiation, $2 \theta-\omega$ scan mode, scan width $=(1.1+0.35$ tan $\theta), 2 \theta$ scan speed $=6^{\circ} \mathrm{min}^{-1} .2097$ R eflections [only $\mathrm{F}_{\mathrm{o}}(\mathrm{h}, \mathrm{k}, \mathrm{l})$] were measured in the range of $3^{\circ}<2 \theta<58^{\circ}$. A bsorption correction was employed using the ψ-scan method (max., min. transmission factors $=1.0,0.819$). Direct methods were applied for the location of the Br atom, and the successive F ourier syntheses for the unique location of non-hydrogen atoms. Full-matrix leastsquares refinement was employed with anisotropic thermal parameters for non-hydrogen atoms. All hydrogen atoms were found in the difference Fourier syntheses and were included without refinement. A total of $1837\left[I_{0}>3 \sigma\left(I_{0}\right)\right]$ reflections were used in the refinement of 193 parameters. The weighting scheme $w=4 F_{0}{ }^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$ with $\sigma\left(F_{0}\right)$ calculated from counting statistics. F inally, anomalous dispersion effects were introduced and refinement converged to give the final R-value of 0.036 ($R_{w}=0.041$) and for its enantiomer an R-value of 0.047 $\left(R_{w}=0.054\right)$. For the correct absolute structure, final refinement gave goodness-of-fit $=1.76$, the maximum shift/error $=0.08$, and the $\Delta \rho_{\text {max }}=0.32$ and $\Delta \rho_{\text {min }}=-0.29 \mathrm{e} \AA^{-3}$. The difference R ratio for two enantiomers (1.305 and 1.317 for R - and $\mathrm{R}_{\mathrm{w}}{ }^{-}$ values) is significantly beyond the 99.5% confidence level. To enlarge the determination, we carried out a similar re measurement in the case of compound (-)-6d. The 30 most sensitive Bijvoet pairs all gave consistency in their sign relationships. All computation programs and sources of scattering factor data are given in ref. 11. Full details of crystal data, fractional atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the C ambridge C rystallographic D ata Centre (CCDC). \ddagger

Acknowledgements

We are grateful to A mano Pharmaceutical Co., Ltd for the generous gift of lipase PS (Pseudomonas fluorescens) and AK (P seudomonas cepacia).
\ddagger See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCD C for this material should quotethe full literature citation and the reference number 207/100.

References

1 Preliminary communication, H. Nakano, K. I wasa, C. K abuto, H. M atsuzaki and H. H ongo, Chem. P harm. Bull., 1995, 43, 1254.

2 (a) W. J. Begley, G. Lowe, A. K. Cheetham and J. M. N ewsam, J. Chem. Soc., Perkin. Trans. 1, 1981, 2620; (b) J. Brennan, J. C hem. Soc., Chem. Commun., 1981, 880; (c) T. K ametani, T. M ochizuki and T. H onda, H eterocycles, 1982, 19, 89; (d) C. K aneko, T. N aito and A. Saito, Tetrahedron Lett., 1984, 25, 1591; (e) N. K atagiri, M. Sato, N. Yoneda, S. Saikawa, T. Sakamoto, M. M uto and C. K aneko, J. Chem. Soc., Perkin Trans. 1, 1986, 1289.

3 N. K atagiri, H. Sato and C. K aneko, Chem. Pharm. Bull., 1990, 38, 288.

4 H. N akano and H. H ongo, C hem. P harm. Bull., 1993, 41, 1885.
5 (a) E. J. Corey and J. Streith, J. Am. Chem. Soc., 1964, 86, 950; (b) R. C. De Selms and W. R. Schleigh, Tetrahedron Lett., 1972, 3563; (c) H. F urrer, C hem. Ber., 1972, 105, 2780; (d) C. K aneko, K. Shiba, H. Fujii and Y. M omose, J. Chem. Soc., Chem. Commun., 1980, 1177; (e) F. F ujii, K. Shiba and C. K aneko, J. Chem. Soc., Chem. Commun., 1980, 537; (f) J. Kurita, T. Yoneda, N. K akusawa and T. Tsuchiya, C hem. Pharm. Bull., 1990, 38, 2911.

6 (a) M. Sato, N. K atagiri, M. M uto, T. H aneda and C. K aneko, Tetrahedron Lett., 1986, 27, 6091; (b) T. Toda and K. Tanaka, Tetrahedron Lett., 1988, 29, 4299.
7 (a) H. Ebiike, Y. Terao and K. A chiwa, Tetrahedron Lett., 1991, 32, 5805; (b) M. M urata and K . A chiwa, Tetrahedron Lett., 1991, 32, 6763; (c) H. N agai, T. Shiozawa, K . A chiwa and K . Y. Terao, Chem. Pharm. Bull., 1992, 40, 2227; (d) B. Jouglet and G. Rousseau,

Tetrahedron Lett., 1993, 34, 2307; (e) H. Nakano, Y. Okuyama K . I wasa and H. Hongo, Tetrahedron: A symmetry, 1994, 5, 1155;
(f) H. N akano, K . I wasa, Y. Okuyama and H. H ongo, Tetrahedron: A symmetry, 1996, 7, 2381.
8 F. M. Semmelhack, S. Tomoda, H. Nagaoka, S. D. Boettger and K . M . H urst, J. A m. C hem. Soc., 1982, 104, 747.
9 J. Orban and J. V. Turner, Tetrahedron Lett., 1983, 24, 2697.
10 W. C. H amilton, A cta. C rystallogr., 1965, 18, 502.
11 All calculations were performed by a MICRO VAX II computer
using the Rigaku 'TEXSAN' Package Program System (1985). A tomic scattering and anomalous dispersion factors were applied from International Tables for X-ray Crystallography, K ynoch Press, Birmingham, 1974, vol. 4.

Paper 6/05698|
Received 14th A ugust 1996
A ccepted 30th J anuary 1997

[^0]: $\dagger[a]_{0}$-Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

